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Abstract 

We offer for the first time an economic explanation to the patterns of index put options’ 

expected returns, that of learning about economic fundamentals.  Expected option returns 

are determined by the gap between   and  -probability measures.  This gap is affected by 

parameter mis-estimation which evolves over time as the agent updates her beliefs.  We 

formalize this intuition by employing a novel option pricing model with breaks in 

fundamentals where the representative agent updates her beliefs by Bayesian learning.  We 

find that the patterns of the simulated under our economy put option returns are similar to 

the empirical S&P 500 put index options ones across different levels of moneyness and time-

to-maturity.  Results are robust even after controlling for leverage and market risk. 
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1 Introduction 

Index put option returns are found to be large.  Bondarenko (2014) finds that, on average, 

at-the-money (out-of-the-money) naked index put returns have an impressive level of -40% 

(-90%) per month.  Coval and Shumway (2001), Jones (2006), Santa-Clara and Saretto 

(2009) and Constantinides et al. (2013) also report large negative returns by examining 

various index put option strategies.   

 Broadie et al. (2009) and Chambers et al. (2014) show that the patterns of index put 

option returns may be the result of mis-estimating parameters in option pricing models.  This 

is because the size of expected returns of a hold-to-maturity option strategy is a function of 

the gap between the   (real-world) and   (risk-neutral) probability measures.  The mis-

estimation of parameters affects this gap.  Broadie et al. (2009) state in their concluding 

section though “Our results are silent on the actual economic sources of the gaps between the 

  and   measures.  It is important to test potential explanations that incorporate investor 

heterogeneity, discrete trading, model misspecification, or learning”.  We fill this void by 

offering an economic explanation to the dynamics of the  -   gap, that of learning about 

fundamentals.  Subsequently, we test whether our setting yields patterns of the S&P 500 

index put option returns similar to these observed empirically.   

 We employ a representative agent’s discrete-time endowment economy where 

stocks, bonds and options trade.  The agent observes dividends whose mean dividend 

growth rate tg  is subject to breaks.  Once a break occurs, the agent does not know the new 

true value of tg  .  Yet, the agent starts learning about tg  recursively via a Bayesian updating 

scheme as new information arrives.  This setting is a natural candidate to explain expected 
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option returns because it allows modelling the gap between the   and  -probability 

measures as a function of the way the agent learns about estimation errors in fundamentals.  

In an economy under Bayesian learning, the wedge between   and   probability measures 

differs from the one under full information.  In the latter case, the stock price risk neutral 

probability measure ( )1tf S +
  is related to the physical probability measure ( )1tf S +

  as 

1 1 1 1( ) ( ) / ( )Q P
t t t t tf S m f S E m+ + + +=  where 1tm +  is the stochastic discount factor.  However, under 

Bayesian learning (BL), we show that this relation changes to 

( ),
1 t 1 1 t 1 t|Ω ( | ) ( | Ω ) / E ( | Ω )BL BL

t t t t t t tf S m f S g f g m+ + + +=   where t( |Ω )tf g  is the probability 

density function of tg  conditional on the information set tΩ  available at time t and tE ( |Ω )BL
t   

is the conditional expectation operator under Bayesian learning.  As the agent updates her 

estimate for tg , the physical probability is updated and as a result the risk-neutral 

probability is also updated.   

 We proceed as follows.  First, we derive an option pricing model under breaks in 

fundamentals and full information where the agent knows the true value of tg .  Then, we use 

the model within the Bayesian learning setting to simulate option returns and we compare 

them to the empirically observed S&P 500 put index options’ returns.  Four are the main 

findings of our study.  First, our setting generates large and statistically significant option 

returns and CAPM alphas for naked index put options as well as for option portfolios that 

control for leverage effects and market risk (delta-hedged portfolios).  Second, the returns 

of the considered option strategies decline in magnitude as moneyness and time-to-maturity 

increase.  These findings are in accordance with these reported by the previous literature 

(e.g., Coval and Shumway, 2001; Bondarenko, 2003; Broadie et al., 2009; Constantinides et 
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al., 2013; and Chambers et al., 2014).  Third, the option returns generated by our model have 

similar patterns to the ones computed from actual S&P 500 index option data.  Fourth, we 

document that the volatility risk premium explains a significant portion of returns on option 

trading strategies.  In the case of leveraged-adjusted and delta-hedged put option portfolios, 

CAPM alphas decrease significantly once the volatility risk premium is included as an 

additional explanatory factor.  This is consistent with Broadie et al. (2009) and Chambers et 

al. (2014) who report that put option portfolios’ returns can be explained by parameters’ 

mis-estimation which induces a gap between the   and   probability measures. 

 We conclude this section by discussing the differences between our study and related 

literature.  Broadie et al. (2009) and Chambers et al. (2014) examine the impact of estimation 

errors by increasing/decreasing the  -measure parameters by one standard deviation from 

the  -parameters.  Their approach represents a reduced-form model.  Our paper 

complements these two studies because we explain option returns by endogenizing the 

dynamics of parameters’ mis-estimation as a function of learning over time.  To the best of 

our knowledge, our study is the first that examines index options’ expected returns by 

providing an economic explanation (learning about fundamentals) for their properties.   

 Our study is also associated with equilibrium models that employ learning to explain 

the existence of a non-flat implied volatility surface rather than option returns.  David and 

Veronesi (2002) propose a model where the dividend drift follows a two-state stochastic 

process and the representative agent is uncertain about the current state of the economy.  

Guidolin and Timmermann (2003) present an equilibrium model where the dividend grows 

along a binomial path with an unknown state probability that is updated recursively.  
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Shaliastovich (2009) offers a model where investors learn about the consumption growth 

rate based on a recency-biased updating procedure and the consumption growth rate is 

uncertain and subject to breaks.  Benzoni et al. (2011) extend a general equilibrium setting 

with an Epstein-Zin representative agent to include jumps and Bayesian updating.  Finally, a 

remark is in order.  Our paper examines index option returns and hence it is distinct from 

the literature that examines option returns for individual equity options (e.g., Goyal and 

Saretto, 2009, Ni, 2009, and Buraschi et al., 2014). 

 The remainder of the paper is structured as follows.  Section 2 presents the learning 

model about fundamentals, how learning affects option returns and the model’s properties.  

Section 3 describes the way to generate simulated option returns and discusses results for 

the naked index put options.  Section 4 discusses results for the leverage-adjusted portfolios.  

Section 5 reports additional robustness checks.  Section 6 concludes. 

 

2 The learning model about fundamentals 

We derive the option-learning model within a discrete-time representative agent’s 

endowment economy.  We assume that the mean dividend growth rate tg  is subject to 

breaks.  First, we consider a full information case where the agent knows the true value of 

tg  once a break occurs.  Then, we incorporate learning by relaxing the full information 

assumption.  We assume that once the break occurs, the true value of tg  is unknown by the 

agent, yet she learns about it gradually by observing market signals (i.e. dividends). 
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2.1 An economy under full information 

First, we assume an economy with full information, where a representative agent prices 

different types of assets.  At time t , there is a one-period zero-coupon default-free bond 𝑩𝑩𝒕𝒕 

(in zero net supply), a stock tS  (with net supply normalized at one) and a set of European 

put option contracts ( ),tp K τ with the stock as underlying asset, where 𝑲𝑲 is the strike price 

and 𝝉𝝉 is the time-to-maturity.  We assume a perfect capital market.  The stock pays real 

dividends tD  which follow a geometric random-walk process with drift tµ  and volatility σ , 

i.e. 

 
1

, ~ (0,ln 1)t
t t t

t

D μ σε ε IIN
D −

 
= + 

 
, (1) 

where the mean dividend growth rate tg  (and hence tµ  given that 2ln(1 ) / 2)t tg σµ = + −  is 

subject to breaks.  The time-period between any two consecutive breaks follows a geometric 

distribution defined by a parameterπ .  Therefore, tg  changes over time, yet its value is 

constant between breaks.  As soon as a break occurs, a new value for tg  is drawn from a 

univariate distribution.  In line with Pesaran et al (2006) and Koop and Potter (2007), we 

choose a geometric distribution because it is a memoryless stochastic process.  This choice 

is consistent with the assumption that agents cannot predict the future and hence they 

cannot predict future breaks in fundamentals.   

 In this type of economy, the market is not complete due to the additional uncertainty 

generated by breaks in the mean dividend growth rate.  We make the market dynamically 

complete by allowing the trading of change-of-state (COS) securities.  The COS concept has 
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been introduced by Guo (2001) as a vehicle to hedge uncertainty caused by regime shifts and 

hence it is a natural instrument to apply for the purposes of our analysis.  We assume that at 

any point in time t, a COS security with price tA  trades which pays one unit in the period 

where a break in the mean dividend growth rate occurs and zero otherwise.  The COS 

security becomes worthless after a break and a new COS security is issued to ensure the 

market is dynamically complete. 

 The representative investor’s preferences are described by a power utility function 

 ( )
1 1               0, 1 
1

ln                         1             

η
t

t

t

C η η
u C η

C η

− −
≥ ≠= −

 =

  (2) 

where 𝐶𝐶𝑡𝑡 is the real consumption at time 𝑡𝑡, and 𝜂𝜂 is the coefficient of relative risk aversion.  

Dividends are the economy’s single source of income and they are consumed as soon as they 

are received, i.e. t tC D= .  The representative agent chooses holding of assets with prices 𝑆𝑆𝑡𝑡 , 

𝐵𝐵𝑡𝑡 and 𝐴𝐴𝑡𝑡 to maximize her lifetime expected utility: 

 
{ }

( )
, 0,
max       

AS B
t k t k t k

k
t t k

w w w k

E β u D
+ + +

∞

+
=

 
 
 
∑  (3) 

where ( )1 / 1β ρ= + , 𝜌𝜌 is the rate of impatience, and S
t kw + , B

t kw +  and A
t kw +  are the shares of 

assets tS , tB  and tA  in the agent's portfolio, respectively.  Notice that put option contracts 

are not considered in the agent’s maximization problem described by equation (3).  This is 

because markets are complete due to the existence of COS securities and hence options are 

redundant.  The prices tS , tB  and tA  are calculated by solving the following Euler equations 
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 ( )1 1 1Et t t t tS S Dm + + + = +   (4) 

 [ ]1E     t t tmB +=  (5) 

 ( )1 1E     t t t t tA b bm + + = −   (6) 

where ( )1 1 /t t tm D D ηβ −
+ +=  is the stochastic discount factor and tb  is a break indicator which 

indicates the occurrence of breaks in the mean dividend growth rate at time t .  1t tb b −=  in 

the case where there is no break at t  and 1 1t tb b −= + if a break has taken place at t .   

 For the case of full information where breaks in the dividend price take place, the 

following Proposition I provides expressions for the equilibrium prices of ,t tS B  and tA  by 

solving equations (4), (5) and (6), respectively.  In addition, we develop Proposition II, which 

provides no-arbitrage prices of a European put option written on the stock. 

Proposition I: The equilibrium prices of 𝑆𝑆𝑡𝑡 , 𝐵𝐵𝑡𝑡 and 𝐴𝐴𝑡𝑡, under full information and breaks in the 

dividend process described in equation (1) are given by: 

 
( )( )

( )( ) ( )1 1 2
1

3

1  
 1 1 Ψ( )

11 1 1
ηtfu

t t t tη
t

ll I π IDS π g π D g
πIρ π g

−

−

  + − = − + + =  −+ − − +    
 (7) 

 
( ) ( )( ) ( ) ( )1 1 1 1
1

u

d

g
η η

t
l

t t
fu l

t
g

B π g π g dG g
ρ

− −  = − + + + +   
∫  (8) 

 
( ) ( ) ( )1 1
1

u

d

g
η

t t t
u l

g

f lA π g dG g
ρ

−
= +

+ ∫  (9) 
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where ( ) ( )1
1 1

u

d

g
η

t t
g

I g dG g−
= +∫ , ( )

( )( )
( )

2 2

2 1

1

1 1 1

u

d

ηg
t

tη
g t

g
I dG g

ρ π g

−

−

+
=

+ − − +∫ , 

( )
( )( )

( )
1

3 1

1

1 1 1

u

d

ηg
t

tη
g t

g
I dG g

ρ π g

−

−

+
=

+ − − +∫  

with ( )11 1 η
uρ g −

+ > +  to obtain positive stock prices. 

Proof: See Timmermann (2001).  

Proposition II: Under full information, the price ( ),full
tp K τ  of European put option at time 𝑡𝑡 

with underlying asset the stock with price 𝑆𝑆𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , strike price 𝐾𝐾 and time-to-expiration 𝜏𝜏 is  

 ( ) { } ( )
+ + +

∞

+

= −
+∫ 

,0

1, max ,0
1 t τ t τ t τ

fu full full full
t full

t

ll

t τ

p K τ K S f S dS
r

 (10) 

with  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

+

−
+ + += + ⋅

⋅  …  1 2 2

(1 ) / |0, | ,

| | |
t τ

ηfull τ
t τ t τ t t τ

z z

f S r β D D ε σ φ z τ π

ψ h π ψ h π g ψ h π g

f

 
                         (11) 

where ( )
+t τ

fullf S  is the risk-neutral price density under full information, 
+t τ

fullS  is defined in 

(equation (7)), ( ) ( )( )
2

*
1 1 1

2

exp 1 1
2

t

t t t i i i
i

D D g g A g g
τ

τ τ
τστσε+ + − −

=

 
= − + + + − 

 
∏  is the risk-

neutral process for dividends, where 1 ( 1,..., )iA i τ= =  with probability π  and *g  is drawn 

from a uniform distribution defined on the support [ ]d ug ,g , z is a random variable that counts 

the number of breaks between t  and t τ+  drawn from a Binomial distribution  ( | , )zφ τ π  with 
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parameters 𝜏𝜏 and 𝜋𝜋, and 1{ }z
i ih =  are random variables which measure time periods between 

breaks drawn from geometric distributions ( )|ihψ π  where 
1

z

i
i

hτ
=

= ∑ .   

( ), 1,
1

1 1full full
t t j j

j

r r
τ

τ+ −
=

+ = +∏  with 1, 11 1 /full full
j j jr B− −+ =  where 1

full
jB −  is the price of the risk-free one-period 

bond at period 𝑗𝑗 − 1 under full information [equation (8)], {𝑔𝑔𝑖𝑖}𝑖𝑖=2𝑧𝑧  are drawn from a univariate 

distribution ( )G   with probability density function 𝜚𝜚(∙) defined on the support [𝑔𝑔𝑑𝑑 ,𝑔𝑔𝑓𝑓] where 

1 tg g=   (the current mean dividend growth rate) and z tg g τ+=  (the mean dividend growth rate 

at time-to-maturity),  𝜀𝜀𝑡𝑡+𝜏𝜏 is the innovation term of the dividends’ geometric random walk 

characterised by a normal density 𝜙𝜙(𝜀𝜀𝑡𝑡+𝜏𝜏|0,𝜎𝜎) with mean zero and volatility 𝜎𝜎. 

Proof: See Appendix B. 

 Three remarks are in order regarding Proposition II. First, equation (10) shows that 

to compute the put price under full information, one needs to integrate the option’s payoff 

over the risk-neutral price density ( )
+t τ

fullf S .  This can be done by Monte Carlo simulation.  

To this end, we simulate dividends under the risk-neutral measure up to time t+τ.  We run M 

simulated paths.  For any given dividend simulated path, we calculate the respective stock 

price obtained from equation (7).  This yields M respective simulated stock prices, i.e. M 

simulated respective option payoffs.  Finally, we average these simulated payoffs over M.  

Note that the ++ ,1 full
t t τr  term in equation (10) cancels out with the one in equation (11) and 

hence knowledge of +,
full

t t τr  is not required.  Second, to simulate dividends, we need to know 

the size of the break (drawn from a uniform distribution) and the probability of the break 

(drawn from a geometric distribution).  Third, the COS securities are implicit in the risk-
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neutral density function.  This is because ( ) ( )* *
1 1 11t t t t t t tg A g A g g A g g− − −= − + = + −  where 

*g  is the post break value of g. 

 

2.2 An economy under partial information and Bayesian learning 

We relax the assumption of full information and we assume that once a break in tg  occurs at 

time t, its new true value is unknown by the representative agent.  The agent knows that 

dividends evolve according to equation (1), yet she cannot estimate the new mean dividend 

growth rate accurately because there is no available historical information immediately after 

a break.  The agent ‘learns’ about the new values of tg  once a break occurs via a Bayesian 

updating procedure by observing the n  historical dividend returns { }1/ t
i i i t n

D D − = −
 (signals) 

paid by the stock, where 1n +  is the number of periods since the last break.  Similar to 

Timmermann (2001), we assume that the agent does not know ex-ante the future dates of 

breaks (memoryless stochastic process), yet she realizes that a break in tg  occurs as soon as 

this happens.   

Under Bayesian learning, asset prices at time 𝑡𝑡 are computed as the conditional 

expected value ( )  E |BL
t t t tλ μ ξ  given by (Timmermann, 2001) 

 ( )
( ) ( | ) ( )

E |
( | ) ( )

u

t
d

u

d

μ full
t t t t tμBL

t t t t μ

t t t tμ

λ μ f μ f μ dμ
λ μ

f μ f μ dμ
  = 

∫
∫

ξ
ξ

ξ

 

 
 (12) 
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where ( )full
t tλ µ  is the value of ( )t tλ µ  under full information, 

( ) ( )1 1ln /  ln /t t t t n t nD D D D− − − − = … ξ  is the vector of historical 𝑛𝑛 signals used to learn the tµ  

value from the most recent break.  ( )tf µ  is the probability density function of tµ  from 

which a new value of µ  is drawn once a break occurs, i.e. ( )tf µ  is transformation of the 

univariate distribution ( )G   from which the mean dividend growth rate is drawn once a 

break occurs.  Given that the uniform probability density function is ( ) 1 / ( )t u dg g gρ = − , the 

corresponding probability density function ( )ty µ  of tµ  is ( ) ( ) ( )2exp / 2 /t t u dy g gµ µ σ= + −  

where ( ) 2ln 1 / 2d dgµ σ= + −  and 2(1 ) / 2.u uln g σµ = + −   The probability 𝑓𝑓ℙ(𝛏𝛏𝑡𝑡|𝜇𝜇𝑡𝑡) is the 

sample likelihood function is assumed to be normal, i.e. 

 ( )2

22

1( | ) exp
2( / )2 ( / )

t t
t t

ξ μ
f μ

σ nπ σ n

 − − =
 
 

ξ  (13) 

which is a normal probability density function with mean ( )
1

1 /
t

t i
i t n

nξ ξ
= − +

= ∑  and variance 

𝜎𝜎2/𝑛𝑛, because the agent knows that historical signals follow the geometric random walk 

described in equation (1).  We use equation (12) to compute put option prices under 

Bayesian learning; we describe the implementation in Section 3.1.  

2.3 Expected option returns under Bayesian learning 

We explain why learning about the true mean dividend growth rate can be an economic 

explanation to the size of options’ expected returns.  The hold-to-maturity t τ+  put options 

expected returns +
p
t τR  and +

,p BL
t τR  under full information and Bayesian learning, respectively, 

are defined as  
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( )
( )

( )
( )

max ,0 max ,0
1 1,

, max ,0
t t τ t t τp

t τ rτ
t t t τ

E K S E K S
p K τ E e K S

R + +
+ −

+

   − −   = − = −
 − 

 

  (14) 

 
( )
( )

,
,

,

max ,0 |
1

max ,0 |

BL
t t τ tp BL

t τ BL rτ
t t τ t

R
E K S

E e K S
+

+ −
+

 − = −
 − 

ξ
ξ



  (15) 

The numerator in equations (14) and (15) is obtained under the physical probability 

measure   whereas the denominator is under the risk-neutral probability measure  .  

Consequently, differences between   and   probability measures affect the size of hold-to-

maturity put option expected returns.  Under full information, the risk neutral probability 

measure ( )1tf S +
  is related to the physical probability measure ( )1tf S +

  as 

 
[ ]

1 1
1

1

( )( )
E  
t t

t
t t

m f Sf S
m

+ +
+

+

=


  (16) 

where 1tm +  is the stochastic discount factor.  However, under partial information and 

Bayesian learning, the   probability measure ,
1( | )BL

t tf S + ξ is conditional on the 

information tξ  received after a given break.  Hence, the risk neutral probability measure 

( ),
1

BL
tf S +

  is also conditional on tξ , i.e. 

 
[ ]

+ +
+

+

=



,

1 1
1

1

, ( | )( | )
E |

BL
t t t

t t BL
BL

t t t

m f Sf S
m

ξξ
ξ

 (17) 

We prove (see Appendix B) that equation (17) can be rewritten as 

 
[ ]

+ +
+

+

=
 

 1 1
1

,

1

( | ) ( | )( | )
E |

t t t t t
t t B

L
L

t t t

B m f S μ f μf S
m

ξξ
ξ

 (18) 
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where ( )|t tf µ ξ  is the probability density function of tμ conditional on the available 

information.   

Equation (18) shows that learning affects the gap between   and   probability 

measures.  The right hand side of (18) shows that the agent updates her beliefs on tµ  via 

( | )t tf μ ξ  given the information set 𝛏𝛏𝑡𝑡.  This yields an updated  -probability measure 

+


1( | )t tf S μ  with respect to future events and hence an updated +
 ,

1( | )t
B

t
Lf S ξ . 

2.4 Model’s properties 

We discuss the properties of our model with a view on the effects on learning of the number 

n of signals and some key parameters.  Consider the posterior probability density function 

( )|t tf µ ξ  with mean *
tµ  and variance 2

,tµσ .  The prior distribution density function ( )tf µ  

of the agent is a normal with mean 0µ  and variance 2
0σ .  Then, ( )|t tf µ ξ  is also normally 

distributed with mean and variance *
tμ  and 2

,μ tσ , respectively given by 

 
22

* 0
0

2 2 2 2
0 0

1

1 1t t

n
σσμ ξ μn n

σ σ σ σ

= +
+ +

 (19) 

and 

 2
,

2 2
0

1
1μ tσ n

σ σ

=
+

. (20) 

where tξ  is the sample arithmetic mean of the signals.  *
tµ  is a weighted average of the prior 

mean 0µ  and tξ  where weights depend on the amount of received information.  We can see 
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that the agent learns about the true value of the parameter as she receives more signals over 

time; 2
,tµσ  (the inaccuracy of the estimation) decreases as 𝑛𝑛 increases.  Moreover, 2

,tµσ

increases immediately after a break because the counter of number of signals n  used to learn 

is reset to zero; 0n =  yields *
0tµ µ=  in equation (19).  Interestingly, learning does not make 

the market incomplete.  This is because 2
,tµσ  is not stochastic.  Instead, it decreases in a 

deterministic way with a reduction factor of order 1 / n  as more signals are received 

[equation (20)]. 

 The model contains three key parameters that affect the way that agent learns.  These 

are the probability π  of the occurrence of a break in µ , the magnitude σ  of the noise of 

signal and the representative agent’s risk aversion η .  We examine their effects via equations 

(19) and (20).  First, in the case where 0π =  i.e. there are no breaks in the mean dividend 

growth rate, the agent can use infinitely many observations (i.e. n →∞ ) as t ∞→  because 

the value of 𝑛𝑛 is never reset to zero.  Then, *
tµ ξ=  and hence, *

tµ  converges to the true value 

µ  given that ξ  is a consistent estimator of µ  in large samples under the normality 

assumption.  Therefore, once a break occurs, the agent learns the true value tµ

asymptotically as in Guidolin and Timmermann (2003).  Thus, asset prices converge to the 

ones given by the full information expressions presented in Proposition I and Proposition II.  

In the other extreme case where 1π = , i.e. the mean dividend growth rate presents breaks 

at every point in time, n  is always zero and hence, *
0tµ µ= .  This implies that the agent cannot 

learn the true value of the unknown parameter because there are no available signals.  In the 

intermediate case where 0 1π< < , the agent never learns the true value of tµ  even 
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asymptotically because the learning process for the mean growth rate is reinitiated after 

each break.  Immediately after a break, the counter n  of the number of signals restarts with 

a value equal to zero. 

 Second, the variance 2σ  of the process followed by dividends affects the way that the 

agents learns about the true parameter once a break occurs.  Consider the case σ →∞ .  Then, 

=*
0tμ μ .  Thus, similar to the case where 1π = , the agent cannot learn from the information 

received (even asymptotically) because signals are extremely noisy.  On the other hand, 

0σ =  (i..e. signals are not noisy) yields *
tµ ξ=  and =2

, 0μ tσ .  In this case, the agent learns the 

true value of µ  just after the break since there is no uncertainty.  Third, the coefficient of 

relative risk aversion η  determines the extent to which learning about tg  affects asset 

prices.  For instance, learning about tg  does not affect the stock price when 1η = .  This is 

because the expression ( )11 η
tg −

+  will equal one in the full information case [equation (7)].  

Consequently, the option price under Bayesian learning will not be affected by learning about 

tg  via the stock price either since tg  (and equivalently tµ ) will not appear in equation (12).  

Learning though does affect the price of the other assets even when 1η = . 

 

3. Index put option returns: Simulations and empirical evidence 

In this section, we simulate put options returns under Bayesian learning about 

fundamentals.  Next, we compare the simulated put option returns to the ones empirically 

observed in S&P 500 index option data to assess whether our model can explain the 

empirical patterns of index put option returns. 
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3.1 Simulation: The setting 

We simulate option returns in an economy with breaks and Bayesian learning in the setting 

explained in Section 2.  To this end, first we simulate dividends and the prices 𝑆𝑆𝑡𝑡 , 𝐵𝐵𝑡𝑡 and 𝐴𝐴𝑡𝑡 

under the physical probability measure  .  For a given set of parameters, we perform 10,000 

simulation runs; all simulation runs start from the same initial (January 2, 1996) µ ξ= .  For 

each simulation run, we generate 12 years (3,024 trading days) of daily dividends.  We 

simulate daily dividends in two steps. First, we simulate a time series of 12 years of daily 

dividends via equation (1).  Then, we generate breaks in 𝑔𝑔𝑡𝑡 (and thus breaks in 𝜇𝜇𝑡𝑡) that we 

impose on the simulated in the first step 12-years dividends time series.  To generate breaks 

in tg , time periods between breaks follow a geometric distribution with parameter 𝜋𝜋.  Once 

a break occurs, a new value for 𝑔𝑔𝑡𝑡 is drawn from a uniform distribution defined on the 

support [ ],d ug g  and this corresponds to a value for tµ .  Across each one of the 10,000 

simulated dividend paths, we obtain the simulated prices for 𝑆𝑆𝑡𝑡 , 𝐵𝐵𝑡𝑡 and 𝐴𝐴𝑡𝑡 on each one of the 

3,024 trading days from equation (12).  

 Next, we obtain simulated European put option prices ( ),t
BLp K τ  under Bayesian 

learning using equation (12); the risk-neutral probability measure   is now required.  Given 

equations (12), (18) and Proposition II, the put option price under Bayesian learning is given 

by 
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We use equation (21) to compute option prices on a monthly basis to obtain non-

overlapping one-month option returns.  On each month of each one of the 10,000 12-year 

simulated paths, we solve equation (21) by a two-step procedure.  First, we solve the inner 

integral in equation (21) that contains the option price under full information.  This integral 

is solved by Monte Carlo simulations based on M=20,000 independent paths of the stock 

price to obtain the put price under full information as described in Proposition II.  We 

generate each of the 20,000 simulated paths by using the probability density ( | )t τ tf S μ°
+  in 

equation (22).  For each one of the 20,000 paths, we use the same initial value for tµ  and we 

obtain an analytical expression for the option payoff which depends of 𝜇𝜇𝑡𝑡.  Second, we 

integrate the analytical expression for the option payoff with respect to tµ  by using 
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numerical (adaptive Simpson quadrature) integration; thus we solve the exterior integral 

that depends on 𝜇𝜇𝑡𝑡 in each one of the Monte Carlo's paths.  Next, we average the outcome 

from the 20,000 paths to obtain the put option price for a given simulated month.  The 

denominator of equation (21) is also solved through numerical integration using the 

adaptive Simpson quadrature.  Given the computational intensity of the numerical methods, 

the simulations were performed in parallel by the use of 20 cores in clusters provided by our 

institutions running continuously for around 120 days. 

 We assume the following parameter values quoted on a monthly frequency to conduct 

simulations in line with Timmermann (2001).  We set the lower and upper bound of the 

uniform distribution ( )G   from which the monthly post-break mean dividend growth rate 

is drawn to 0.126%lg = −  and 0.705%ug = , respectively.  These values are in accordance 

with the values observed in market data in real terms; the average of the S&P 500 real 

dividend growth over 1996-2007 equals 0.510%.  We also set the rate of impatience at 

0.713%.  This choice is necessary to satisfy the condition ( ) ( )11 1 1 ug αρ π −+ > − +  in order to 

ensure a positive stock price in equation (7) for any combination of parameters.  We set the 

volatility of the geometric random-walk process to 1.44%.  We consider three different 

values for the coefficient of relative risk aversion 0.2, 0.5, 5η = .  We set the probability of 

breaks 0.056π = .  This follows from applying the Chu et al. (1996) dynamic test for 

structural breaks to daily real dividends from the S&P 500 index over the period 1996-2007.  

We detect eight breaks in the mean dividend growth rate over the 3,024 days of the 12-year 

period. 
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3.2 Index options returns: Evidence from simulated and actual option data 

In line with Broadie et al. (2009) and Chambers et al. (2014), we create a time series of non-

overlapping simulated hold-to-maturity index put options returns P
t Tr +  for different strikes 

and maturities for each simulated dividend path as 

 
( )
( )

max ,0
1

,
t τp

t τ BL
t

K S
r

p K τ
+

+

−
= −  (23) 

where ( ),BL
tp K τ  is the price of a K -strike τ -maturity put option under Bayesian learning 

obtained from equation (21) where  tS τ+  is the stock price at time t τ+ .  Moreover, we 

compare the size and pattern of the simulated put option returns to the S&P 500 index put 

options empirical ones.  To this end, we obtain daily S&P 500 European put index options 

data from the OptionMetrics Ivy DB database spanning 1996 – 2007.  The database contains 

daily closing bid and ask option prices, Black-Scholes implied volatilities, time-to-maturity, 

strike price, closing underlying index price, and the risk-free interest rate. Option prices 

correspond to closing bid-ask midpoints.  In line with Bernales and Guidolin (2014), we 

exclude options whose prices violate arbitrage bounds, their ask price is less than the bid 

price, their bid price equals zero, their price is less than $3/8 to avoid the effects of price 

discreteness since the smallest tick size is $1/16 for the S&P 500 index options and which 

have zero open interest. 

Table 1 reports summary statistics for the simulated option returns for three 

different values of the agent’s relative risk aversion ( 0.2, 0.5 and 5.0η = , Panels A, B and C, 

respectively).  Entries report the average moment (mean, volatility, skewness, kurtosis) over 

the 10,000 simulated dividend paths of hold-to-maturity put option returns for different 
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moneyness levels (ranging from 0.96 to 1.02) and time-to-maturities (30 days and 90 days-

to-maturity); we focus on this particular range of moneyness levels because most of the 

options trading activity occurs there (Broadie et al., 2009).  t-statistics and p-values 

computed under the null hypothesis that returns equal zero are also reported.   Table 1 also 

reports summary statistics for the empirical option returns (Panel D).  We compute average 

option returns for the same moneyness and time-to-maturity levels used in the simulation 

setting.  To compute the fixed moneyness level’s option return, we interpolate linearly across 

the option returns of the two options that surround the targeted moneyness level.  Then, to 

compute the fixed maturity option return, we interpolate linearly across the obtained fixed 

moneyness option returns of the two options whose times-to-maturity surround the 

targeted maturity level.  From now onwards, we report results from the analysis on the 90-

days returns by first converting the 90-days returns to 30-days returns for comparison 

purposes.   

[Insert Table 1 here] 

 We can see that the simulated index put option returns are large and negative. They 

are statistically significant and their distribution is far from being normal. In addition, their 

magnitude decreases as the moneyness level increases. For example, a one-month-to-

maturity put option with ratio / 0.96K S =  ( / 1.00K S =  ) has an average monthly return of 

−95.71% (−54.82%), −97.08% (−38.29%) and −99.55% (– 92.69%) for coefficients of 

relative risk aversion at 0.2, 0.5 and 5.0, respectively. Option returns also decrease in 

magnitude as the time-to-maturity increases for any given moneyness level.  For instance, an 

at-the-money put option has an average return of -54.82% and -12.93% when the time-to-

maturity is 30- and 90-days, respectively, for the case where 0.2η = . These findings are in 
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line with those reported in previous studies (see, e.g., Coval and Shumway, 2001, 

Bondarenko, 2003, Broadie et al., 2009; and Constantinides et al., 2013).  

Furthermore, we can see that the patterns of the S&P 500 empirical put option returns 

are similar to the simulated ones.  The magnitude of empirical option returns decreases as 

the moneyness level and time-to-maturity increases. For instance, a three-month-to-

maturity S&P 500 put option contract with ratio 𝐾𝐾/𝑆𝑆 = 0.96 (𝐾𝐾/𝑆𝑆 = 1.00) has an average 

return of −23.87% (−15.47%).  In addition, an at-the-money option has an average return 

of -27.18% and -15.47% when the time-to-maturity is 30-days and 90-days.  The empirical 

put returns are large, negative, and statistically different from zero, just as it was the case 

with the simulated put option returns under our economy with learning. 

 

4. Returns on leverage-adjusted option portfolios 

The returns of naked put options are affected by their leverage.  We expect greater option 

returns for option contracts that have a greater leverage; this is the case especially for out-

of-the-money option contracts with short-term time-to-maturities as shown in Table 1 for 

our simulated and empirical option average returns.  In this section, we examine whether 

our results for naked puts carry over once we control for leverage.  To this end, we construct 

leverage-adjusted portfolios. 

4.1 Formation of option strategies 

To construct leverage-adjusted portfolios, we assume that Black-Scholes (1973) and 

Merton’s (1973) assumptions hold in line with previous studies which examine leverage-
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adjusted index option returns.  Then, the instantaneous option returns are related to the 

underlying asset’s returns as follows 

 ( )
( ) ( )

( ) ( )t tt t

t t t t

df S f SS dSrdt r dt
f S f S S S

δ
∂  

= + − − ∂  
  (24) 

where 𝑆𝑆𝑡𝑡 is the underlying asset price, 𝑟𝑟 the risk-free rate, 𝑓𝑓(𝑆𝑆𝑡𝑡) the option price, and 𝛿𝛿 the 

continuous dividend yield paid by the underlying asset.  Equation (24) is re-arranged to  

 ( )
( ) ( )1 11t t

t t

df S dSrdt dt
f S S

ω ω δ− −+ − = +   (25) 

where ( )( ) ( )( )/ /t t t tdf S S S f Sω = ∂  is the option’s elasticity with respect to the underlying asset 

price.  Equation (25) shows that we can construct a leverage-adjusted portfolio that earns the return 

of the underlying asset plus its dividend yield by investing 1ω−  in an option contract and 11 ω−−  

in the risk-free rate.  This implies that ‘leverage-adjusted’ portfolios with the same underlying 

asset should earn the same return (i.e. that of the underlying asset) across different levels of 

moneyness and time-to-maturities.  In addition, we construct delta-hedged portfolios.  Delta-

hedged portfolios with the same underlying asset are also free of leverage effects because 

they earn the same return (equal to the risk-free rate) across different levels of moneyness 

and time-to-maturities. 

 Inevitably, the construction of the leverage-adjusted portfolios under equation (25)) 

is not model-free and relies on the validity of the Black-Scholes-Merton assumptions which 

admittedly do not hold in our setting.  However, this model error effect is not a concern for 

the purposes of our study.  This is because the previous academic literature has also 
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computed option returns of leverage-adjusted and delta-hedged portfolios by adopting the 

same assumptions (e.g., Jones, 2006, Gonçalves and Guidolin, 2006, and Constantinides et al., 

2013).  This enables us to compare our subsequently obtained results to these of the 

previous literature on an equal footing.  In addition, the construction of these strategies and 

hence the computation of option returns is in line with the industry practice.  Interestingly, 

albeit equation (25) is not model-free, option’s delta and option’s elasticity formulas are 

model-free for a wide family of popular option pricing models that price plain vanilla options, 

including the Black and Scholes model, and option models with jump-diffusion and stochastic 

volatility (Alexander and Nogueira, 2007).  This alleviates concerns on the effect of model 

error to the construction of the delta-hedged portfolios. 

4.2 Evidence from simulated and S&P 500 options data 

We calculate simulated and empirical S&P 500 non-overlapping hold-to-maturity returns of 

leverage-adjusted and delta-hedged option portfolios.  Table 2 reports summary statistics 

for 30-days and 90-days simulated hold-to-maturity non-overlapping returns on leverage-

adjusted and delta-hedged option portfolios (Panels A and B, respectively) as well as their 

empirical counterparts (Panels C and D, respectively).  In the interests of brevity, we shall 

report results for the case where the relative risk aversion 𝜂𝜂 equals 0.2; we obtain 

qualitatively similar results for the cases where 0.5, 5η = . 

[Insert Table 2 here] 

We can see that the magnitude of average simulated returns of leverage-adjusted and 

delta-hedged option portfolios decreases as the moneyness and time-to-maturity of put 

options employed in the portfolios increase.  For instance, leverage-adjusted strategies for 
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put options with ratio / 0.96K S =  ( / 1.00K S = ) have 3.09% (2.45%) and 1.37% (1.21%) 

one- and three-month average returns, respectively.  This is in line with the results of 

previous literature on the patterns of leverage-adjusted (Constantinides et al., 2013) and 

delta-hedged (Bakshi and Kapadia, 2003, and Broadie et al., 2009) option positions. 

 Moreover, we can see that the patterns of the empirically observed average returns 

in both option portfolios are in accordance with the ones generated by our model.  For any 

given maturity, the magnitude of average returns decreases as the moneyness increases.  

Similarly, for a given moneyness level, average returns decrease as the time-to-maturity 

increases.  Therefore, our setting generates put option returns similar to the empirically 

observed in terms of their size and patterns even when we control for leverage and market 

risk. 

4.3 CAPM alphas and Sharpe ratios under learning 

Previous literature documents that empirically observed index put option returns are too 

big to be explained by the CAPM model (e.g., Coval and Shumway, 2001; and Bondarenko, 

2003). Typically, this is manifested by high Sharpe ratios and statistically significant CAPM 

alphas.  We investigate whether our learning model also generates option returns that 

exhibit these properties.  In case it does, then this would be additional evidence that option 

returns may be the result of a learning model with breaks in the mean dividend growth.  Once 

we simulate option returns for a given option strategy (i.e. the naked put strategy, the 

leverage-adjusted put option portfolio or the delta-hedged put option portfolio), we estimate 

the CAPM alpha 𝛼𝛼 by running the following regression: 

 − = + − +, , ,( ) ( )F t t F F m t t F tr r α β r r ε  (26) 
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where ,F tr  is the simulated return of a given option portfolio at time t.  In the case of 

simulations generated by our option learning model, mr  equals the excess return of the 

underlying asset (adjusted for dividends) obtained from equation (12) because this is the 

only stock in the economy and r  is the risk free rate calculated as the inverse of the bond 

price under partial information obtained from equation (12).  In the case of market option 

data, ,F tr  is the market return of the considered option portfolio, ,m tr  the S&P 500 index excess 

return (adjusted for dividends) and tr  is the one-month LIBOR rate.  

Table 3 reports the CAPM alphas and Sharpe ratios estimated from simulated hold-

to-maturity 30- and 90-days returns of index put option, leverage-adjusted put, delta-hedged 

put and straddle (Panels A, B and C, respectively).  Panels D, E and F report the empirical 

counterparts for the three respective strategies.  In the case of simulated data, averages are 

taken over the 10,000 simulated dividend paths.  Simulations are carried out assuming a 

representative agent’s risk aversion 0.2η = ; results are qualitatively similar for 0.5, 5η =  

and are available from the authors upon request.  The alpha’s t-statistic value is also 

reported.  This is computed by Newey-West standard errors to correct for heteroscedasticity 

and serial correlation in the residual term of equation (26).  

[Insert Table 3 here] 

We can see that simulated CAPM alphas are statistically significant and Sharpe ratios 

are high in absolute terms ranging up to 3.78.  They decrease as the moneyness and time-to-

maturity increases.  Moreover, the sign of empirical CAPM alphas and Sharpe ratios and their 

patterns are similar to these generated by our option learning model.  These findings are also 

similar to the ones reported in previous empirical studies (e.g., Coval and Shumway, 2001, 
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Bondarenko, 2003, Bollen and Whaley, 2004, Constantinides et al., 2013, amongst others).  

In sum, our results on CAPM alphas and Sharpe ratios provide additional evidence that our 

learning model can provide an explanation for the behaviour of index put option strategies’ 

empirical returns. 

 

5 Further robustness tests 

5.1 Is learning necessary to reproduce empirical option returns? 

One may argue that the values of CAPM alphas and Sharpe ratios in Table 3 (especially in 

leverage-adjusted and delta-hedged portfolios) can be induced only by making tg  subject to 

breaks rather than by also introducing a learning mechanism.  To assess this conjecture, we 

estimate CAPM alphas and Sharpe ratios for leverage-adjusted and delta-hedged portfolios 

under two cases: (i) full information with no breaks and (ii) full information with breaks.  (i) 

and (ii) are special cases of the model presented in Section 2.  The case of full information 

and no breaks is Lucas (1978) model where option prices of European contracts are obtained 

from the Black and Scholes (1973) model.  In the case of full information with breaks, we 

calculate asset prices using Propositions I and II.  

Table 4 reports CAPM alphas and Sharpe ratios obtained from simulated option 

returns, under (i) and (ii), for the leverage-adjusted and delta-hedged option portfolios 

(Panels A and B, respectively).  Entries report average estimates over 10,000 simulations.  

We calculate 30-day and 90-day hold-to-maturity returns for option contracts with strike-

to-price ratios ranging from 0.96 to 1.02. 

[Insert Table 4 here] 
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We can see that a setting which does not incorporate learning about fundamentals 

and allows only for breaks in tg  cannot explain the empirically observed index put option 

returns.  The t-statistics for CAPM alphas are marginally greater in the case of full 

information and breaks compared to the no-breaks case (signaling a small effect of breaks 

on returns of put option portfolios), yet there is still a small percentage of simulations with 

significant alphas.  These findings hold for both leverage-adjusted and delta-hedged option 

portfolios and across the various moneyness and time-to-maturity levels.  They are in sharp 

contrast to the ones reported in Table 3 for the CAPM alphas and Sharpe ratios obtained from 

simulated under the learning setting and empirical option data.  This implies that a full 

information model with breaks in the mean dividend growth cannot explain the empirically 

observed index put strategy returns and learning should also be incorporated. 

5.2 Option returns, multifactor models and learning  

In Section 4.3, we documented that our model can explain the empirically estimated CAPM 

alphas and Sharpe ratios.  In this section, we investigate whether our model generates option 

returns which can be explained by factors that have been documented to describe option 

returns.  This will provide further support to our economic explanation for index option 

returns because it will highlight that learning can account for both the empirical regularities 

in index put option returns as well as for the relation between option returns and other 

market factors.  

We examine whether option returns are related to the market risk premium, the 

volatility risk premium, the slope MonSlope  of implied volatilities as a function of moneyness, 

and the slope MatSlope  of implied volatilities as a function of time-to-maturity (implied 
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volatility term-structure).  In line with Bollerslev (2009), at the end of each month we 

estimate the volatility risk premium as the difference between the option implied volatility 

IV and the realized volatility RV  prevailing over the previous month.  We extract IV  from 

an at-the-money European put option with one-month to maturity.  We calculate RV  as the 

annualized standard deviation of the daily stock log-returns over each month to avoid 

overlapping periods.  Our model generates a 12%, 6% and 46% variance risk premium per 

month on average over 1996-2007 for respective coefficients 0.2, 0.5, 5η =  of relative risk 

aversion of the representative agent.  We compute MonSlope  as the difference between the 

implied volatility of a 30-day put option contract with / 0.96K S =  and that of a 30-day 

option contract with / 1.04K S = .  We compute MatSlope  as the difference between the 

implied volatility of an at-the-money contract with 30-days to maturity and that of an at-the-

money contract with 90-days to maturity.  In the case of the empirical analysis with S&P 500 

option contracts, we compute the fixed moneyness and maturity implied volatilities by 

interpolating linearly across the implied volatilities extracted from options that surround 

the targeted levels. 

Table 5 reports results from regressing simulated option returns on excess market 

returns, the variance risk premium VRPt, MonSlope  and MatSlope  for the case of leverage-

adjusted and delta-hedged portfolios (Panels A and B, respectively).  Panels C and D report 

the factors’ coefficients obtained from running regressions with empirical data for the case 

of leverage-adjusted and delta-hedged portfolios, respectively.  We report results for 30-day 

time-to-maturity options for moneyness at 0.96 and 1.00.  t-statistics  for the empirical 

regressions are reported in square brackets. 
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[Insert Table 5 here] 

 We can see that the volatility risk premium is an important factor in explaining 

simulated option returns.  In at least 80% of the simulations, VRPt is statistically significant 

for both types of portfolios and for both moneyness levels.  Moreover, the percentage of 

simulations where CAPM alpha is statistically significant as well as the size of alpha is 

reduced significantly in the case where VRPt is incorporated as a regressor.  For instance, in 

the case of a leverage-adjusted strategy with moneyness 1.00, alpha is reduced from 0.02 

when VRPt is not used (where 100% of simulations have significant alpha values) to 0.00 

when we include VRPt as a factor (where only 12% of simulations comprise significant 

alphas).  This echoes Broadie et al. (2009) who argue that option returns can be explained 

by parameter mis-estimation that generates a difference between the risk-neutralized and 

physical probability measures; the variance risk premium also arises as a result of this 

difference.  The MonSlope  and MatSlope  explain partially the option portfolio returns; they are 

statistically significant for a smaller percentage of simulations compared to the evidence for 

the variance risk premium’s case.  Regarding the evidence from empirical data, we can see 

that the volatility risk premium is statistically significant.  This is in line with the results 

obtained from the simulated under our learning model option returns and in line with the 

results reported by Broadie et al. (2009).  On the other hand, the coefficients of MonSlope  and 

MatSlope  are marginally significant in just a few cases.  
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6. Conclusions  

The difference between   and   probability measures affects expected option returns.  One 

way to generate this gap and hence to explain expected option returns is by allowing for 

parameters’ mis-estimation.  Rather than taking a reduced form approach to model 

parameters’ mis-estimaiton, we endogenize parameter uncertainty as a function of learning 

about economic fundamentals (dividends).  This micro-founded approach induces gaps 

between   and   probability measures and therefore it is a natural candidate to explain 

patterns in put index options returns.  To the best of our knowledge, the study of expected 

option returns within a learning about fundamentals setting is novel. 

 We develop an equilibrium option pricing model where there are breaks in the mean 

dividend growth rate.  We invoke the model within a Bayesian learning setting where the 

agent starts learning about the true mean of the dividend process once a break occurs.  Our 

model delivers index put option returns and CAPM alphas that have the same patterns with 

the empirically observed S&P 500 put index options returns across different levels of 

moneyness and time-to-maturity.  We also show that the volatility risk premium explains a 

significant portion of returns on option trading strategies. This is in accordance with Broadie 

et al.’s (2009) results who find that a difference between risk-neutral and physical 

probability measures induced by estimation risk can explain the returns of index put option 

portfolios. Results are robust across different option strategies that control for leverage and 

market risk and they are in line with previous empirical literature.  
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Appendix A: Proof of Proposition II  

Proof of Proposition II: To obtain equations (10) and (11), we divide both sides of the Euler 

equation (4) used to price the stock at 𝑡𝑡 + 𝑘𝑘, by the bond price (equation (8)) 

  
(1 + 𝜌𝜌)𝑆𝑆𝑡𝑡+𝑘𝑘

(1 − 𝜋𝜋)(1 + 𝑔𝑔𝑡𝑡+𝑘𝑘)−𝜂𝜂 + 𝜋𝜋 ∫ (1 + 𝑔𝑔𝑡𝑡+𝑘𝑘)−𝜂𝜂𝑑𝑑𝑑𝑑(𝑔𝑔𝑡𝑡+𝑘𝑘)𝑔𝑔𝑢𝑢
𝑔𝑔𝑑𝑑

= E𝑡𝑡+𝑘𝑘 �𝛽𝛽 �
𝐷𝐷𝑡𝑡+k+1
𝐷𝐷𝑡𝑡+𝑘𝑘

�
−𝜂𝜂

∙ (𝑆𝑆𝑡𝑡+𝑘𝑘+1 + 𝐷𝐷𝑡𝑡+𝑘𝑘+1)
(1 + 𝜌𝜌)

(1 − 𝜋𝜋)(1 + 𝑔𝑔𝑡𝑡+𝑘𝑘)−𝜂𝜂 + 𝜋𝜋 ∫ (1 + 𝑔𝑔𝑡𝑡+𝑘𝑘)−𝜂𝜂𝑑𝑑𝑑𝑑(𝑔𝑔𝑡𝑡+𝑘𝑘)𝑔𝑔𝑢𝑢
𝑔𝑔𝑑𝑑

�  

(A.1) 

Under full information, the future stock price and the future cumulative dividend values are 

given by: 

𝑆𝑆𝑡𝑡+𝑘𝑘∗ =
(1 + 𝜌𝜌)𝑆𝑆𝑡𝑡+𝑘𝑘

(1 − 𝜋𝜋)(1 + 𝑔𝑔𝑡𝑡+𝑘𝑘)−𝜂𝜂 + 𝜋𝜋 ∫ (1 + 𝑔𝑔𝑡𝑡+𝑘𝑘)−𝜂𝜂𝑑𝑑𝑑𝑑(𝑔𝑔𝑡𝑡+𝑘𝑘)𝑔𝑔𝑢𝑢
𝑔𝑔𝑑𝑑

 (A.2) 

and 

𝐷𝐷𝑡𝑡+𝑘𝑘∗ = �𝐷𝐷𝑡𝑡+𝑠𝑠

k

s=0

(1 + 𝜌𝜌)
(1 − 𝜋𝜋)(1 + 𝑔𝑔𝑡𝑡+𝑠𝑠)−𝜂𝜂 + 𝜋𝜋 ∫ (1 + 𝑔𝑔𝑡𝑡+𝑠𝑠)−𝜂𝜂𝑑𝑑𝑑𝑑(𝑔𝑔𝑡𝑡+𝑠𝑠)𝑔𝑔𝑢𝑢

𝑔𝑔𝑑𝑑

 (A.3) 

Under the power utility assumption, the definition of the pricing kernel yields: 

E𝑡𝑡 �𝛽𝛽 �
𝐷𝐷𝑡𝑡+k+1
𝐷𝐷𝑡𝑡+𝑘𝑘

�
−𝜂𝜂 (1 + 𝜌𝜌)

(1 − 𝜋𝜋)(1 + 𝑔𝑔𝑡𝑡+𝑘𝑘)−𝜂𝜂 + 𝜋𝜋 ∫ (1 + 𝑔𝑔𝑡𝑡+𝑘𝑘)−𝜂𝜂𝑑𝑑𝑑𝑑(𝑔𝑔𝑡𝑡+𝑘𝑘)𝑔𝑔𝑢𝑢
𝑔𝑔𝑑𝑑

� = 1 (A.4) 

Adding 𝐷𝐷𝑡𝑡+𝑘𝑘∗  to (A.1) and combining the resulting expression with (A.4) yields 
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     𝑆𝑆𝑡𝑡+𝑘𝑘∗ + 𝐷𝐷𝑡𝑡+𝑘𝑘∗

= E𝑡𝑡+𝑘𝑘 �𝛽𝛽 �
𝐷𝐷𝑡𝑡+k+1
𝐷𝐷𝑡𝑡+𝑘𝑘

�
−𝜂𝜂 (1 + 𝜌𝜌)

(1 − 𝜋𝜋)(1 + 𝑔𝑔𝑡𝑡+𝑘𝑘)−𝜂𝜂 + 𝜋𝜋 ∫ (1 + 𝑔𝑔𝑡𝑡+𝑘𝑘)−𝜂𝜂𝑑𝑑𝑑𝑑(𝑔𝑔𝑡𝑡+𝑘𝑘)𝑔𝑔𝑢𝑢
𝑔𝑔𝑑𝑑

(𝑆𝑆𝑡𝑡+𝑘𝑘+1∗

+ 𝐷𝐷𝑡𝑡+𝑘𝑘+1∗ )� 

(A.5) 

Equation (A.4) shows that 𝑆𝑆𝑡𝑡+𝑘𝑘
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓∗ + 𝐷𝐷𝑡𝑡+𝑘𝑘∗  follows a martingale under the probability measure.  

Thus, the risk-neutral density is: 

𝑓𝑓ℚ(𝑆𝑆𝑡𝑡+𝑘𝑘)

= 𝛽𝛽 �
𝐷𝐷𝑡𝑡+k+1
𝐷𝐷𝑡𝑡+𝑘𝑘

�
−𝜂𝜂 (1 + 𝜌𝜌)

(1 − 𝜋𝜋)(1 + 𝑔𝑔𝑡𝑡+𝑘𝑘)−𝜂𝜂 + 𝜋𝜋 ∫ (1 + 𝑔𝑔𝑡𝑡+𝑘𝑘)−𝜂𝜂𝑑𝑑𝑑𝑑(𝑔𝑔𝑡𝑡+𝑘𝑘)𝑔𝑔𝑢𝑢
𝑔𝑔𝑑𝑑

𝑓𝑓𝑡𝑡(𝐷𝐷𝑡𝑡+𝑘𝑘+1)

= (1 + 𝑟𝑟𝑡𝑡+𝑘𝑘)𝛽𝛽 �
𝐷𝐷𝑡𝑡+k+1
𝐷𝐷𝑡𝑡+𝑘𝑘

�
−𝜂𝜂

𝑓𝑓𝑡𝑡(𝐷𝐷𝑡𝑡+𝑘𝑘+1) 

(A.6) 

where 𝑟𝑟𝑡𝑡+𝑘𝑘 is the one-period risk-free rate under full information. 

 Therefore, the risk-neutral measure for any single-period is unique and exists, which 

is a sufficient condition to have a unique risk-neutral measure on an infinite-period economy 

obtained by repetition of several single-periods (Pliska, 1997). Following this, we define our 

infinite-period risk-neutral measure by considering all states that the mean dividend growth 

rate could achieve in 𝑡𝑡 + 𝜏𝜏 and by using the independence property of breaks. Therefore, 

𝑓𝑓ℚ(𝑆𝑆𝑡𝑡+𝜏𝜏) is the risk-neutral density of all paths that lead to a certain state in which the 

dividend is 𝐷𝐷𝑡𝑡+𝜏𝜏; where its expected value is: 

𝐸𝐸𝑡𝑡[𝐷𝐷𝑡𝑡+𝜏𝜏] = 𝐷𝐷𝑡𝑡𝐸𝐸𝑡𝑡 �
𝐷𝐷𝑡𝑡+1
𝐷𝐷𝑡𝑡

𝐸𝐸𝑡𝑡+1 ��
𝐷𝐷𝑡𝑡+2
𝐷𝐷𝑡𝑡+1

�…𝐸𝐸𝑡𝑡+𝜏𝜏−1 ��
𝐷𝐷𝑡𝑡+𝜏𝜏
𝐷𝐷𝑡𝑡+𝜏𝜏−1

���� (A.7) 
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We know that the innovation term of the random-walk process, 𝜀𝜀𝑡𝑡 , and the breaks on 𝑔𝑔𝑡𝑡 are 

independent; thus the expected value of 𝐷𝐷𝑡𝑡+𝜏𝜏 can be written as: 

𝐸𝐸𝑡𝑡[𝐷𝐷𝑡𝑡+𝜏𝜏] = 𝐷𝐷𝑡𝑡𝐸𝐸𝑡𝑡 �exp�√𝜏𝜏𝜎𝜎𝜀𝜀𝑡𝑡+𝜏𝜏 − 𝜏𝜏𝜎𝜎2/2��(1 + 𝑔𝑔𝑡𝑡+𝑖𝑖−1)
𝜏𝜏

𝑖𝑖=1

� (A.8) 

 Let us consider 𝑧𝑧 the number of breaks between 𝑡𝑡 and 𝑡𝑡 + 𝜏𝜏 drawn from a binomial 

distribution, 𝜑𝜑(𝑧𝑧|𝜏𝜏,𝜋𝜋), with parameters 𝜏𝜏 and 𝜋𝜋; while {ℎ𝑖𝑖}𝑖𝑖=1𝑧𝑧  are the time periods between 

breaks which are also random variables that follow a geometric distribution with parameter 

𝜋𝜋, 𝜓𝜓(ℎ𝑖𝑖|𝜋𝜋), where 𝜏𝜏 = ∑ ℎ𝑖𝑖𝑧𝑧
𝑖𝑖=1 . Therefore, in each path we have: 

𝐷𝐷𝑡𝑡+𝜏𝜏𝐹𝐹𝐹𝐹 = 𝐷𝐷𝑡𝑡exp�√𝜏𝜏𝜎𝜎𝜀𝜀𝑡𝑡+𝜏𝜏 − 𝜏𝜏𝜎𝜎2/2��(1 + 𝑔𝑔𝑖𝑖)ℎ𝑖𝑖
𝑧𝑧

𝑖𝑖=1

 (A.9) 

where 𝑔𝑔𝑖𝑖 is constant between breaks, while post-break 𝑔𝑔𝑖𝑖 is drawn from a continuous 

univariate density 𝑑𝑑(∙) with pdf 𝜚𝜚(𝑔𝑔𝑖𝑖) and 𝑔𝑔𝑓𝑓  and 𝑔𝑔𝑓𝑓 as the lower and upper bounds, in 

which 𝑔𝑔1 (𝑔𝑔𝑧𝑧) is the current (at time-to-maturity) level of the mean dividend growth rate. 

Therefore: 

𝑓𝑓𝑡𝑡(𝐷𝐷𝑡𝑡+𝜏𝜏) = 𝜙𝜙(𝜀𝜀𝑡𝑡+𝜏𝜏|0,𝜎𝜎)𝜑𝜑(𝑧𝑧|𝜏𝜏,𝜋𝜋)𝜓𝜓(ℎ1|𝜋𝜋)[𝜓𝜓(ℎ2|𝜋𝜋)𝜚𝜚(𝑔𝑔2) …𝜓𝜓(ℎ𝑧𝑧|𝜋𝜋)𝜚𝜚(𝑔𝑔𝑧𝑧)] (A.10) 

Thus, from Equation (A.6) we have: 

 
𝑓𝑓ℚ(𝑆𝑆𝑡𝑡+𝜏𝜏) = (1 + 𝑟𝑟𝑡𝑡+𝜏𝜏)𝛽𝛽𝜏𝜏 �

𝐷𝐷𝑡𝑡+𝜏𝜏
𝐷𝐷𝑡𝑡

�
−𝜂𝜂

𝜙𝜙(𝜀𝜀𝑡𝑡+𝜏𝜏|0,𝜎𝜎)𝜑𝜑(𝑧𝑧|𝜏𝜏,𝜋𝜋)

∙ 𝜓𝜓(ℎ1|𝜋𝜋)[𝜓𝜓(ℎ2|𝜋𝜋)𝜚𝜚(𝑔𝑔2) …𝜓𝜓(ℎ𝑧𝑧|𝜋𝜋)𝜚𝜚(𝑔𝑔𝑧𝑧)]     

(A.11) 

where 1 + 𝑟𝑟𝑡𝑡+𝜏𝜏 = ∏ (1 + 𝑟𝑟𝑗𝑗−1,𝑗𝑗)𝜏𝜏
𝑗𝑗=1  with 1 + 𝑟𝑟𝑗𝑗−1,𝑗𝑗 = 1/𝐵𝐵𝑗𝑗−1 where 𝐵𝐵𝑗𝑗−1 is the price of the risk-

free one-period bond in the period 𝑗𝑗 − 1 defined in Preposition I. 
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Appendix B: Proof of Equation (18)  

,
1( | )BL

t tf S + ξ  can be expressed as 

 , 1 1
1

( | ) ( )( | )
( )

BL t t t
t t

t

f S f Sf S
f

+ +
+ =

ξξ
ξ

 


  (B.1) 

Given that the  -probability measure is conditional on tξ through the unknown parameter 

tµ , we use multivariate Bayes rule and re-write equation (B.1) as 

 , 1 1 1
1

( | , ) ( | ) ( )( | )
( )

BL t t t t t t
t t

t

f S μ f μ S f Sf S
f

+ + +
+ =

ξξ
ξ

  


  (B.2) 

since + + +=  
1 1 1( | ) ( | , ) ( | )t t t t t t tf S f S μ f μ Sξ ξ .  The Euler equation (4) shows that the stock 

price depends on tµ . Hence, ( ) ( )1| , |t t t t tf S fµ µ+ =ξ ξ  .  Also, Bayes rule yields 

( ) ( ) ( )1 1 1| ( | )t t t t t tf S f S f S fµ µ µ+ + +=    .  hen, equation (B.2) is rewritten as 

 , 1
1
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+ =
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 (B.3) 

since ( ) ( )( | )
u

d

t t t t tf f f d
µ

µ

µ µ µ= ∫ξ ξ   .  ( )tf µ  is the prior distribution of tµ  and 

+


1( | )t tf S μ  is also known given equation (7).  Given equation (B.3), equation (17) becomes 
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 (B.4) 

We derive the last line in (B.4) by applying Bayes rule.  
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Table 1: Summary statistics for put options simulated and empirical returns 
This table displays summary statistics for the simulated and empirical returns of naked S&P 500 puts spanning 
1996-2007.  Simulations are based on a discrete-time economy with breaks in the stock’s dividend process and 
partial information under a Bayesian recursive process.  Entries report statistics for values of relative risk 
aversion 0.2, 0.5, 5η = .  Average 30- and 90-day hold-to-maturity non-overlapping returns are computed for 

naked put options with strike-to-price ratios ranging from 0.96 to 1.02.  p-values are computed under the null 
hypothesis that average returns are zero.  Entries for simulated data report the average estimates over 10,000 
simulations; for each of these simulations, we generate 12 years of daily dividends. The percentage of 
simulations with a significant mean return is reported in parentheses at a 5% level of significance.  We report 
results from the analysis on the 90-days returns by first converting the 90-days returns to 30-days returns for 
comparison purposes. 

 
  

K/S 0.96 0.98 1.00 1.02 0.96 0.98 1.00 1.02

Mean -95.71% -83.80% -54.82% -22.78% -27.82% -22.04% -12.93% -6.69%
t -stat -182.77 -18.73 -8.48 -3.85 -27.83 -3.72 -2.14 -1.21

p -value 0.00 0.00 0.00 0.01 0.13 0.12 0.19 0.32
(100%) (99%) (99%) (96%) (70%) (67%) (46%) (20%)

Volatility 102.84% 83.69% 76.07% 63.39% 90.93% 74.83% 65.56% 54.70%
Skewness 10.85 4.99 2.03 0.64 8.68 5.78 3.25 1.79
Kurtosis 107.26 31.11 7.88 2.88 82.77 35.75 13.14 4.28

Mean -97.08% -73.18% -38.29% -10.33% -9.58% -7.95% -5.02% -2.04%
t -stat -110.70 -9.95 -4.45 -1.51 -7.26 -1.58 -0.73 -0.28

p -value 0.02 0.01 0.02 0.02 0.24 0.36 0.43 0.53
(96%) (95%) (94%) (92%) (57%) (30%) (14%) (6%)

Volatility 93.13% 72.86% 102.77% 53.72% 80.85% 72.84% 60.11% 50.55%
Skewness 10.61 5.55 1.95 0.57 9.36 6.02 3.45 1.81
Kurtosis 116.46 37.38 6.91 2.74 90.19 41.08 13.63 4.16

Mean -99.55% -95.50% -92.69% -64.65% -57.55% -57.25% -53.22% -20.42%
t -stat -142.91 -146.08 -59.71 -32.16 -37.75 -26.43 -26.59 -10.23

p -value 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.02
(100%) (99%) (98%) (98%) (98%) (97%) (96%) (96%)

Volatility 80.56% 61.01% 30.06% 21.78% 71.21% 53.17% 23.06% 21.84%
Skewness 9.41 9.33 7.20 4.18 8.63 8.82 7.65 5.18
Kurtosis 97.92 93.45 64.64 33.09 79.17 76.70 65.70 37.05

Mean -68.72% -36.02% -27.18% -22.17% -23.87% -18.56% -15.47% -11.37%
t -stat -10.64 -4.61 -4.59 -4.27 -8.58 -6.88 -6.25 -3.83

p -value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Volatility 139.41% 173.76% 136.07% 107.67% 35.19% 38.23% 37.30% 35.00%
Skewness 6.01 4.04 2.79 1.83 5.05 3.50 2.84 2.07
Kurtosis 45.80 22.59 13.71 7.69 33.22 17.52 11.97 7.64

Panel D: Empirical S&P 500 Rput

Panel B: Simulated R put , η=0.5

Panel C: Simulated R put , η=5.0

30 days to expiration 90 days to expiration

Panel A: Simulated R put , η=0.2
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Table 2:Summary statistics for simulated and empirical returns of leverage-adjusted and delta-hedged 
put options 
This table displays summary statistics for simulated and empirical returns of put option portfolios that control 
for leverage and market risk spanning 1996-2007.  Simulations are based on a discrete-time economy with 
breaks in the stock’s dividend process and partial information under a Bayesian recursive process for a 
coefficient of relative risk aversion 0.2η =  . Average 30- and 90-day hold-to-maturity non-overlapping returns 
 𝑅𝑅𝑝𝑝𝑓𝑓𝑡𝑡 and 𝑅𝑅𝐷𝐷𝐷𝐷𝑝𝑝𝑓𝑓𝑡𝑡are computed for leverage-adjusted and delta-hedged put option portfolios, respectively, with 
strike-to-price ratios ranging from 0.96 to 1.02.  p-values are computed under the null hypothesis that average 
returns are zero.  Entries for simulated data report the average estimates over 10,000 simulations; for each of 
these simulations, we generate 12 years of daily dividends.  The percentage of simulations with a significant 
mean return is reported in parentheses at a 5% level of significance.  We report results from the analysis on 
the 90-days returns by first converting the 90-days returns to 30-days returns for comparison purposes. 

 
  

K/S 0.96 0.98 1.00 1.02 0.96 0.98 1.00 1.02

Mean 3.09% 2.98% 2.45% 1.66% 1.37% 1.30% 1.21% 1.09%
t -stat 47.47 25.50 13.16 7.70 18.69 9.26 6.57 5.49

p -value 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00
(100%) (100%) (100%) (100%) (98%) (98%) (98%) (97%)

Volatility 2.84% 2.49% 2.18% 2.14% 2.80% 2.46% 2.22% 1.99%
Skewness -1.92 -4.02 -1.81 -0.57 -6.69 -5.18 -3.20 -1.77
Kurtosis 25.90 25.01 6.16 2.93 55.89 32.66 12.10 3.98

Mean -2.23% -2.16% -1.66% -0.86% -0.67% -0.35% -0.18% -0.05%
t -stat -8.94 -8.92 -7.81 -0.75 -1.93 -1.64 -1.53 -1.16

p -value 0.00 0.00 0.00 0.02 0.22 0.14 0.23 0.32
(99%) (100%) (99%) (99%) (94%) (63%) (39%) (23%)

Volatility 1.12% 0.90% 0.49% 0.04% 1.41% 0.96% 0.50% 0.20%
Skewness 0.26 0.64 0.87 0.59 1.91 1.69 1.53 1.40
Kurtosis 4.34 4.07 4.17 3.75 12.91 6.78 4.83 4.50

Mean 2.22% 1.36% 1.28% 1.29% 1.83% 1.58% 1.45% 1.18%
t -stat 10.89 5.49 6.02 5.51 9.39 8.10 7.93 5.17

p -value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Volatility 4.41% 5.52% 4.89% 4.84% 2.46% 2.77% 2.75% 2.68%
Skewness -6.11 -4.20 -2.98 -1.82 -4.32 -3.11 -2.72 -2.19
Kurtosis 52.98 27.05 16.84 8.43 27.51 15.09 11.86 8.89

Mean -1.05% -0.42% -0.17% -0.05% -0.75% -0.57% -0.42% -0.22%
t -stat -6.46 -2.70 -1.62 -0.57 -5.31 -4.75 -4.34 -2.14

p -value 0.00 0.01 0.11 0.57 0.00 0.00 0.00 0.03
Volatility 3.52% 3.42% 2.46% 1.74% 1.78% 1.72% 1.46% 1.23%
Skewness 2.02 2.54 1.74 1.05 1.33 1.13 1.06 0.96
Kurtosis 17.55 18.24 11.57 6.58 7.78 5.88 5.10 4.33

Panel C: Empirical S&P 500 R put  (leverage-adjusted)

Panel D: Empirical S&P 500 R DHput 

30 days to expiration 90 days to expiration

Panel A: Simulated R put  (leverage-adjusted)

Panel B: Simulated R DHput 
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Table 3: Simulated and empirical CAPM alphas and Sharpe ratios  
This table displays the simulated and empirical CAPM 𝛼𝛼 and Sharpe ratio on 30-day and 90-day hold-to-
maturity naked put option, leverage-adjusted put and delta-hedged put option returns (𝑅𝑅𝐷𝐷𝐷𝐷𝑝𝑝𝑓𝑓𝑡𝑡,𝑅𝑅𝑝𝑝𝑓𝑓𝑡𝑡 ,𝑅𝑅𝑝𝑝𝑓𝑓𝑡𝑡, 
respectively) for option contracts with strike-to-price ratios ranging from 0.96 to 1.02.  Simulations are based 
on a discrete-time economy with breaks in the stock’s dividend process and partial information under a 
Bayesian recursive process for a coefficient of relative risk aversion 0.2η = .  Associated t-statistics are 
computed under the null hypothesis that CAPM 𝛼𝛼 is zero.  Entries for simulated figures report the average 
estimates over 10,000 simulations; for each of these simulations, we generate 12 years of daily dividends. The 
percentage of simulations with a significant CAPM 𝛼𝛼 is reported in parentheses at a 5% level of significance.  
We report results from the analysis on the 90-days returns by first converting the 90-days returns to 30-days 
returns for comparison purposes. 

  

K/S 0.96 0.98 1.00 1.02 0.96 0.98 1.00 1.02

CAPM α -1.02 -0.86 -0.54 -0.23 -0.35 -0.25 -0.15 -0.07
t -stat -110.21 -22.36 -15.35 -15.14 -10.13 -5.04 -3.76 -3.48

p -value 0.00 0.00 0.00 0.00 0.09 0.05 0.04 0.04
(100%) (100%) (100%) (100%) (80%) (85%) (84%) (83%)

Sharpe ratio -3.78 -1.65 -0.74 -0.35 -1.18 -0.59 -0.35 -0.20

CAPM α 0.02 0.02 0.02 0.01 0.01 0.01 0.00 0.00
t -stat 35.39 21.97 15.23 15.93 9.38 5.02 4.18 3.66

p -value 0.00 0.00 0.00 0.00 0.07 0.04 0.03 0.03
(100%) (100%) (100%) (100%) (84%) (87%) (93%) (86%)

Sharpe ratio 2.98 1.65 0.76 0.36 1.42 0.60 0.35 0.22

CAPM α -0.02 -0.02 -0.02 -0.01 -0.01 -0.01 0.00 0.00
t -stat -37.17 -21.15 -15.62 -15.87 -9.63 -5.25 -3.89 -3.66

p -value 0.00 0.00 0.00 0.00 0.07 0.04 0.03 0.03
(100%) (100%) (100%) (100%) (84%) (87%) (93%) (86%)

Sharpe ratio -1.16 -1.31 -1.34 -1.15 -0.60 -0.59 -0.56 -0.51

CAPM α -0.59 -0.28 -0.15 -0.09 -0.22 -0.17 -0.13 -0.08
t -stat -10.78 -4.90 -4.28 -3.66 -10.07 -9.07 -8.86 -6.75

p -value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sharpe ratio -0.50 -0.21 -0.20 -0.21 -0.71 -0.52 -0.45 -0.36

CAPM α 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00
t -stat 9.21 4.37 4.05 3.31 3.17 1.80 0.44 -1.61

p -value 0.00 0.00 0.00 0.00 0.00 0.07 0.66 0.11
Sharpe ratio 0.42 0.18 0.19 0.19 0.27 0.16 0.11 -0.01

CAPM α -0.02 -0.01 -0.01 0.00 -0.02 -0.02 -0.02 -0.01
t -stat -9.78 -4.94 -4.86 -4.36 -15.57 -13.90 -13.15 -12.90

p -value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sharpe ratio -0.40 -0.23 -0.22 -0.21 -1.09 -1.07 -1.04 -1.02

Panel D: Empirical R put 

Panel E: Empirical R put  (leverage-adjusted)

Panel F: Empirical R DHput 

Puts (30 days to expiration) Puts (90 days to expiration)

Panel A: Simulated R put 

Panel B: Simulated R put  (leverage-adjusted)

Panel C: Simulated R DHput 
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Table 4: Simulated CAPM alphas and Sharpe ratios under two scenarios: Full information with no 
breaks and full information with breaks 
 

This table reports CAPM 𝛼𝛼 and Sharpe ratios under two scenarios: full information with no breaks in the mean 

dividend growth rate 𝑔𝑔𝑡𝑡 (Black-Scholes setting), and full information with breaks in 𝑔𝑔𝑡𝑡 .  Entries report results 

for leverage-adjusted put returns 𝑅𝑅𝑝𝑝𝑓𝑓𝑡𝑡 and delta-hedged put option returns 𝑅𝑅𝐷𝐷𝐷𝐷𝑝𝑝𝑓𝑓𝑡𝑡.  Average 30-day and 90-

day hold-to-maturity returns are calculated for option contracts with strike-to-price ratios ranging from 0.96 

to 1.02. Associated t-statistics are computed under the null hypothesis that CAPM 𝛼𝛼 is zero.  Entries for 

simulated figures report the average estimates over 10,000 simulations; for each of these simulations, we 

generate 12 years of daily dividends with a representative agent’s risk aversion 0.2η =  . The percentage of 

simulations with a significant CAPM 𝛼𝛼 is reported in parentheses at a 5% level of significance.  We report results 

from the analysis on the 90-days returns by first converting the 90-days returns to 30-days returns for 

comparison purposes. 

 

 
 

0.96 0.98 1.00 1.02 0.96 0.98 1.00 1.02

CAPM α 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00
t -stat 0.29 -0.26 0.42 0.52 -0.41 -0.02 0.13 0.80

p -value 0.40 0.44 0.45 0.48 0.38 0.14 0.27 0.44
(22%) (17%) (19%) (27%) (23%) (16%) (13%) (20%)

Sharpe ratio 0.04 -0.03 0.04 0.05 -0.01 -0.02 0.02 0.01
CAPM α 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

t -stat 0.62 0.28 0.89 0.93 0.97 0.25 0.26 0.94
p -value 0.52 0.47 0.53 0.67 0.44 0.29 0.30 0.45

(27%) (22%) (21%) (32%) (24%) (18%) (14%) (22%)
Sharpe ratio 0.04 0.03 0.04 0.05 0.05 0.02 0.01 0.04

CAPM α 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
t -stat -0.35 0.24 -0.47 -0.52 0.48 0.20 -0.17 -0.81

p -value 0.40 0.24 0.45 0.47 0.39 0.24 0.17 0.44
(22%) (16%) (19%) (24%) (23%) (14%) (13%) (26%)

Sharpe ratio -0.01 0.03 -0.03 -0.05 0.05 0.04 -0.01 -0.03
CAPM α 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

t -stat -0.64 -0.30 -0.85 -0.94 -0.98 -0.27 -0.30 -0.85
p -value 0.49 0.28 0.42 0.44 0.44 0.25 0.30 0.44

(27%) (22%) (22%) (27%) (23%) (17%) (14%) (28%)
Sharpe ratio -0.03 -0.02 -0.07 -0.08 -0.02 -0.01 -0.01 -0.01

No Breaks 
Full Inf.
(Black-

Scholes)

Breaks
Full Inf.

K/S

No Breaks 
Full Inf.
(Black-

Scholes)

Breaks
Full Inf.

Puts (30 days to expiration) Puts (90 days to expiration)

Panel A: Simulated R put  (leverage-adjusted)

Panel B: Simulated R DHput
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Table 5: Relation of model simulated index put option strategies returns to factors  
Entries report the coefficients of factors employed to explain simulated and empirical 30-day leverage-adjusted 
and delta-hedged put option returns 𝑅𝑅𝑝𝑝𝑓𝑓𝑡𝑡 ,𝑅𝑅𝐷𝐷𝐷𝐷𝑝𝑝𝑓𝑓𝑡𝑡, respectively.  Simulations are based on a discrete-time 
economy with breaks in the stock’s dividend process and partial information under a Bayesian recursive 
process for a coefficient of relative risk aversion of 𝜂𝜂=0.2. 𝑅𝑅𝑚𝑚,𝑡𝑡 is the simulated (empirical) excess market’s 
return equivalent to the excess stock’s return in the model (S&P 500). VRPt, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑡𝑡,𝑡𝑡 are the 
volatility risk premium, slope of the implied volatility skew and slope of the term structure of implied 
volatilities, respectively. Entries for simulated figures report average estimates over 10,000 simulated daily 
dividend paths. The percentage of simulations with significant statistics for the respective factors and t-
statistics are reported in parentheses at a 5% level of significance.   

 

Constant 0.02 0.01 0.02 0.01 0.02 0.00 0.02 0.00
(100%) (75%) (95%) (71%) (100%) (12%) (97%) (18%)

R m,t 0.08 0.07 0.04 0.07 0.94 0.92 0.92 0.92
(39%) (41%) (45%) (38%) (99%) (100%) (100%) (100%)

VRPt 0.00 0.18 0.00 0.00 0.00 0.25 0.00 0.00
(0%) (85%) (0%) (0%) (0%) (96%) (0%) (0%)

Slope Mon,t 0.00 0.00 0.09 0.00 0.00 0.00 0.02 0.00
(0%) (0%) (95%) (0%) (0%) (0%) (23%) (0%)

Slope Mat,t 0.00 0.00 0.00 0.34 0.00 0.00 0.00 0.38
(0%) (0%) (0%) (71%) (0%) (0%) (0%) (66%)

Constant -0.02 -0.01 -0.02 -0.01 -0.02 0.00 -0.02 0.00
(100%) (74%) (97%) (73%) (100%) (13%) (99%) (18%)

R m,t 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
(20%) (19%) (19%) (21%) (29%) (29%) (30%) (27%)

VRPt 0.00 -0.17 0.00 0.00 0.00 -0.25 0.00 0.00
(0%) (80%) (0%) (0%) (0%) (93%) (0%) (0%)

Slope Mon,t 0.00 0.00 -0.08 0.00 0.00 0.00 -0.02 0.00
(0%) (0%) (96%) (0%) (0%) (0%) (24%) (0%)

Slope Mat,t 0.00 0.00 0.00 -0.30 0.00 0.00 0.00 -0.37
(0%) (0%) (0%) (69%) (0%) (0%) (0%) (61%)

Constant 0.02 0.01 0.01 0.01 0.00 0.00 0.01 0.00
[9.21] [7.00] [1.89] [7.11] [4.05] [1.33] [2.96] [3.19]

R m,t 0.72 0.68 0.72 0.72 1.03 0.97 1.03 1.03
[16.32] [13.23] [16.26] [16.32] [37.43] [31.97] [37.56] [37.18]

VRPt 0.00 0.08 0.00 0.00 0.00 0.13 0.00 0.00
[0.00] [1.68] [0.00] [0.00] [0.00] [4.21] [0.00] [0.00]

Slope Mon,t 0.00 0.00 0.07 0.00 [0.00] 0.00 0.09 0.00
[0.00] [0.00] [0.96] [0.00] [0.00] [0.00] [1.81] [0.00]

Slope Mat,t 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.02
[0.00] [0.00] [0.00] [0.79] [0.00] [0.00] [0.00] [0.33]

Constant -0.02 -0.01 -0.01 -0.01 -0.01 0.00 -0.01 0.00
[9.78] [7.50] [2.02] [7.57] [4.86] [2.06] [3.12] [3.87]

R m,t 0.27 0.31 0.27 0.27 -0.03 0.02 -0.03 -0.03
[6.37] [6.34] [6.41] [6.27] 0.00 [1.20] [0.80] [1.28] [1.23]

VRPt 0.00 -0.08 0.00 0.00 0.00 -0.12 0.00 0.00
0.00 [1.66] 0.00 0.00 0.00 [4.16] 0.00 0.00

Slope Mon,t 0.00 0.00 -0.07 0.00 0.00 0.00 -0.08 0.00
[0.00] [0.00] [1.01] [0.00] 0.00 0.00 [1.73] 0.00

Slope Mat,t 0.00 0.00 0.00 -0.08 0.00 0.00 0.00 -0.02
0.00 0.00 0.00 [0.80] 0.00 0.00 0.00 [0.32]

Panel C: Empirical R put  (leverage-adjusted)

Panel D: Empirical R DHput 

Panel B: Simulated R DHput 

Moneyness 0.96 and expiration 30 days Moneyness 1.00 and expiration 30 days
Panel A: Simulated R put  (leverage-adjusted)


	2 The learning model about fundamentals
	2.1 An economy under full information
	2.2 An economy under partial information and Bayesian learning
	2.3 Expected option returns under Bayesian learning
	2.4 Model’s properties
	3. Index put option returns: Simulations and empirical evidence
	4. Returns on leverage-adjusted option portfolios
	6. Conclusions
	Appendix A: Proof of Proposition II
	Appendix B: Proof of Equation (18)
	References

